The effect of EFG1 gene silencing on down-regulation of SAP5 gene, by use of RNAi technology.

نویسندگان

  • Maryam Moazeni
  • Mohammad Reza Khoramizadeh
  • Ladan Teimoori-Toolabi
  • Fatemeh Noorbakhsh
  • Sassan Rezaie
چکیده

Efg1 transcription factor is believed to be the main regulator of hyphal formation under many different conditions. In addition, it is responsible for positive regulation of the expression of several hyphal-specific genes. SAP5, which encodes secreted aspartic proteinase, is one of the mentioned genes and is crucial for pathogenicity properties. In the present work we have established the experimental conditions for the use of siRNA in the diploid yeast Candida albicans in order to knock-down the EFG1 gene expression as well as the Efg1-dependent gene, SAP5. The 19-nucleotide siRNA was designed according to cDNA sequence of EFG1 gene in C. albicans and modified-PEG/LiAc method was applied for yeast transfection. To quantify the level of both EFG1 and SAP5 gene expression, the cognate mRNAs were measured in C. albicans by quantitative real-time RT-PCR and data was consequently analyzed by use of REST® software. Images taken by fluorescent microscopy method indicated the effectiveness of transfection. According to REST® software data analysis, expression of EFG1 gene decreased about 2.5-fold using 500 nM of siRNA. A 7-fold decrease in EFG1 gene expression was observed when applying 1 µM of siRNA (P<0.05). Consequently, the expression of SAP5 was significantly down-regulated both in yeast treated with 500 and 1000 nM of siRNA (P<0.05). In conclusion, post-transcriptional gene silencing (PTGS) is likely to be considered as a promising approach to discover new gene targets so as to design fungal-specific antifungal agents, and it is strongly possible that we are taking the right way to battle with C. albicans-associated infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Down-Regulation of the ALS3 Gene as a Consequent Effect of RNA-Mediated Silencing of the EFG1 Gene in Candida albicans

Background: The most important virulence factor which plays a central role in Candida albicans pathogenesis is the ability of this yeast to alternate between unicellular yeast and filamentous hyphal forms. Efg1 protein is thought to be the main positive regulating transcription factor, which is responsible for regulating hyphal-specific gene expression under most conditions. ALS3 is one of the ...

متن کامل

Down-Regulation of sidB Gene by Use of RNA Interference in Aspergillus nidulans

Background: Introduction of the RNA interference (RNAi) machinery has guided the researchers to discover the function of essential vital or virulence factor genes in the microorganisms such as fungi. In the filamentous fungus Aspergillus nidulans, the gene sidB plays an essential role in septation, conidiation and vegetative hyphal growth. In the present study, we benefited from the RNAi strate...

متن کامل

The Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology

have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was design...

متن کامل

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta medica Iranica

دوره 52 1  شماره 

صفحات  -

تاریخ انتشار 2014